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ABSTRACT 
The detailed mechanism of high temperature chlorine 

corrosion, the dominant cause of corrosion in a municipal 
solid waste incinerator (MSI), has still to be clarified 
(Schroer, 2002). Upon its way through the boiler the raw 
gas is subject to various physical and chemical processes 
and interactions. Of these, sulphation of chlorides is 
supposed to have the major impact on chlorine corrosion 
(Neumann, 1997).  
The physical and chemical mechanisms of corrosion were 
investigated at a municipal solid waste incinerator. Both, the 
particulate and gas phase of the flue gas, were chemically 
and physically analyzed during their way through the boiler, 
at temperatures from close to 1000 °C down to  200 °C. The 
raw gas composition was analyzed during normal operation 
and soot blowing cleaning routine. Additionally, operating 
parameters of the plant were varied, and deposition 
processes were evaluated with the aim to find out primary 
measures to reduce corrosion rates. 
The particle mass concentration exhibits a bimodal size 
distribution with maxima at approximately 0.5 µm – 
growing by duration of travel – and 100 µm. First results 
show that sulphation of the particles can be observed upon 
travel through the boiler and on the fouling. Sulphur 
containing additives increased the sulphation of the particles 
during flight though not to completion.  
 
 
INTRODUCTION 

High temperature chlorine corrosion of superheaters is 
one of the main cost factors of municipal solid waste 
incineration plants. In contrast to coal, waste has a high 
content of alkaline, earth alkaline and chlorine compounds 

which cause, in combination with high temperature, high 
corrosion rates. 
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Fig. 1:  Cross section of the MSI boiler investigated. It has 

four vertical passes with the superheater packages 
(5) and (6) placed at the beginning of the 3rd pass. 

 
Whereas the principle mechanisms of corrosion have been 
understood nowadays, there are still open questions 



regarding kinetics and raw gas evolution, one of the reasons 
for a broad range of corrosion rates in similar plants that 
still cannot be explained completely (M. Spiegel, 1994 and 
Warnecke, 2003).  

A study has been started to setup a comprehensive 
model for corrosion in a municipal solid waste incineration 
plant (MSI). The plant investigated has an annual 
operational capacity of 180.000 tons, operating with three 
lines each equipped with a vertical-4- pass boiler.  

The raw gas has a mean load of approx. 2-4 g/m³ of 
particulate matter, which consists of particles of different 
physical condition (liquid or solid), different shape 
(spherical, cubic, flat, fractal, etc.) and different size (nuclei 
of some nanometres up to ash pieces of some millimetres in 
diameter) (Deuerling, 2005). Deposition of particulate 
matter is supposed to play the major role in exposing metal 
surfaces inside the boiler to corrosive substances (Schroer, 
2002 and W. Spieglel, 2003). The aerodynamic diameter of 
depositing particles ranges from some nanometres to several 
hundreds of micrometers. The small particles are deposited 
by diffusion and thermophoretic effects, the larger ones due 
to inertial impaction (estimation of inertial deposition 
predicts a lower aerodynamic diameter of approximately 
20 µm for high chance of impaction at the geometry of 
superheater tubes) (Benker, 2005). 

The raw gas components are subject to various physical 
and chemical processes and interactions of particulate and 
gas phase during passage through the boiler. 
Thermodynamic equilibrium predictions do not represent 
the real situation in the boiler due to very short residence 
times of the raw gas at a given temperature level (Deuerling, 
2005 and Maguhn, 2003). Therefore, the kinetic of most of 
the reactions has to be considered. Hence, nucleation of 
particles, e.g. alkali salts, from the gas phase might appear 
at a lower temperature (further in the flue-gas duct) than 
thermodynamically calculated. The progression of the single 
reactions, however, plays a major role in understanding 
corrosion processes and setting up a concise corrosion 
model. 
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Fig. 2: Cross section of the porous tube diluter (PTD) probe 

 
 
 
 
 
 
 
 
 
 

METHODS 
Particles from 30 nm to 3 mm were sampled, 

transferred to off-stack instruments, size fractionated and 
analyzed regarding chemical composition and mass 
concentration. Additionally, acidic components of the gas 
phase were analyzed. Measurements were performed in the 
first pass (900 °C) and second pass (700 °C), straight 
behind the first two superheater bundles in the third pass 
(500 °C) and finally in the forth pass (300 °C). As the 
composition of the fuel exhibits considerable temporal 
variation, each measurement was carried out in parallel at 
the reference point (2nd pass) and at the measuring point in 
question. According to this, two identical measurement 
systems were set up. 

To minimize sampling artifacts, a high temperature 
resistant probe was constructed which instantaneously 
dilutes and tempers the raw gas to 300 °C in a range of 250 
– 1000 °C of boiler temperature. To retain the particulate 
matter in its current state, rapid but smooth dilution of the 
raw gas was accomplished by a porous tube diluter. The 
porous tube is positioned directly behind the swan neck 
inlet of the sampling probe and is provided with preheated 
clean air. The probe is kept to a constant temperature of 
300 °C by air cooling, independent from the varying 
ambient temperature (Baron, 2001; Deuerling, 2005; 
Lyyränen, 2004; Mikkanen, 2000; Mikkanen, 2001 and 
Turrek, 2004). 

The temperature of the aerosol sample is kept at 300 °C 
until the first ejection diluter (see fig. 3). This temperature 
was chosen to prevent condensation of water until final 
dilution. Additionally, the physical condition of several 
eutectics of metal chlorides melting beneath 300 °C could 
thus be maintained throughout the sampling path. 
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The coarse particle fraction is deposited in a tailored 

cyclone. Subsequently the branch for analysis of the gas 
phase and main pump is separated. After a further dilution 
by a factor of 100 by a two ejector dilutor cascade, the fine 
particles (30 nm – 12 µm) are size fractionated by an ELPI 
(Dekati Oy, Finland) and collected for chemical analysis in 
a Berner low-pressure impactor cascade (60 nm – 10 µm). 
For analyzing the size distribution of particles from 0.8 µm 
to 20 µm an Aerodynamic Particle Sizer (TSI Inc., USA) 
was employed (see fig. 3) (Deuerling, 2005).  
 
 
 
RESULTS 
 
Mass balance 

The total mass concentration was determined by 
summing the sampled data of all instruments and taking into 
account the losses. In summary, the mass concentration is 
approx. 3.2 g/m³ in the first and second pass, 2.6 g/m³ in the 
third pass behind the first two superheater packages and 
2.1 g/m³ in the middle of the forth pass after the aerosol has 
passed all superheaters and half of the economisers. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Scheme of the measurement equipment with PTD probe, cyclone and ejector dilution cascade. All flows of the 
system are divided isokinetically. 

The deposits inside the inlet of the probe varied in mass 
from pass to pass. Chemical analysis showed a good 
correlation with the particular content of the cyclone, 
implying that primarily coarse particles were deposited in 
the bend of the inlet. Consequently, its content was merged 
with that of the cyclone. Figure 4 shows the different mass 
concentration fractions of the components of the sampling 
system.  
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Fig. 4: Total mass balance of the four passes 

 
In total, the mass concentration is reduced over the 

course of the boiler; however, this total trend is only 
reflected by the fraction of the inlet. The content of the inlet 
contributed nearly half of the whole sampled mass 
concentration in the first pass. This portion is drastically 
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reduced to a finally negligible value in the 4th pass. Vice 
versa, the content of the cyclone has tendency to increase 
from pass to pass, so, when added, the inlet and cyclone 
show a good compliance with the total trend. 

 
Chemical composition 

Fifteen particle size fractions and the inlet content were 
chemically analysed. Looking at the relevant elements only, 
the particles can be divided into two main groups, < 20 µm 
and > 20 µm, where the chemical composition differs 
significantly. 

The fraction < 20 µm has a high content of chlorine, 
potassium and sodium, indicating their origin from NaCl 
and KCl. The sulphur content is about 5 %, but only few 
silicon and calcium is present in this fraction. 

The fraction > 20 µm has a much higher content of 
silicon and calcium, which are typical constituents of ash set 
free directly from the fire.  
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3rd Pass - Mean Chemical Composition 
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Fig. 6: Chemical composition of the four main particle 

fractions in the 3rd pass during normal operation. The 
coarse fraction is displayed in its two fractions, the 
content of the cyclone (= “> 20 µm”) and the inlet. 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 5 a-d: Chemical composition of all size fractions (in micrometers) from 1

 

st pass (a) to 4th pass (d). Column 9 shows the 
composition of the inlet. The so called “Rest” is the sum of minor present elements (like titanium, bromine etc.) and the 
oxygen of the oxides of the shown elements. 
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Fig. 7a (left), 7b (right): Sulphation of the aerosol particles on-the-fly (7b) is accompanied by a decrease of SO2 and 
increasing HCl content of the gas phase (7a) through the passes. 

 
 
 

The summarizing graphs of figure 5 display the 
composition of the inlet as the ninth column. It is obvious – 
neglecting the 4th pass, where the inlet has nearly no content 
– that the inlet is very similar to the cyclone content. This 
observation was confirmed by correlation calculations. 
Consequently, for the considerations concerning mass 
concentration and chemistry, the content of the inlet was 
completely added to the cyclone content.  

 
Sulphation 

Sulphation of the chlorides is supposed to play a key 
role in corrosion processes. By this reaction alkali chlorides 
are converted to sulphates by sulphur dioxide. If sulphation 
occurs during the flight of chloride containing aerosol 
particles, chlorine is released mainly as indifferent HCl, as 
concerning corrosion (1).  

 
2 KCl + SO3 + H2O    K2SO4 + 2 HCl   (1) 

 
The sulphation of particles already deposited on 

superheater tubes is supposed to result in the formation of 
“active” chlorine (2) that subsequently reacts with the iron 
of the tube steel (Kautz, 1972).  

 
2 NaCl + SO3 + ½ O2   Na2SO4 + Cl2   (2) 

 
The chemical composition of the aerosol particles 

shows a decrease of chlorine content in the three finest 
fractions, from the first to the third pass, accompanied by an 
increase of the sulphur content of these particles. Sulphation 
of the particles therefore occurs throughout the passes on-
the-fly, so that already (partly) sulphated particles reach the 
superheaters. This conversion corresponds with a measured  
increase of the hydrogen chloride content of the raw gas 
(see fig. 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The composition of the inlet and the fouling of the 

superheater shows a slightly higher content of chlorines and 
sulphur than the content of the cyclone. This can be 
explained by an additional deposition of fine particles by 
thermophoresis or turbophoresis. For mass balance aspects, 
these additional amounts do not play a major role, though. 
 
Size distribution 

The aerodynamic particle size distribution appears 
bimodal through the way of the boiler. The first mode at 
approx. 0.5 µm should be merely created by secondary 
particles which are generated by the fire. The maximum of 
this fine mode shifts to slightly higher values during the 
travel of the aerosol (see fig. 8). This behaviour can be well 
understood by chemical and physical processes causing a 
growth of the particles. Nucleation from the gas phase 
occurs in the hot regions down to approx. 650 °C creating 
new particles in the 1st pass. Further condensation results in 
a quick growth of these ultra-fine particles as well as in 
growing of ash particles emitted from the fire. Furthermore, 
coagulation of particles increases the mean diameter of the 
particles in this size fraction up to 10 µm. 

The second mode appears at approx. 300 µm and is 
mainly composed of primary particles like ashes and 
calcium oxide spherules. These particles are also growing 
by condensation. Because of the high initial particle 
diameter the coarse fraction does not change its size 
distribution significantly. The coarse fraction contributes to 
the particle mass concentration similarly as the first mode; 
however, it is more reduced on the way through the boiler.  

Between the two modes there is a range of very low 
mass concentration which is increased from the 1st to the 4th 
pass, mainly by growing particles from the fine fractions. 
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Soot blowing 

Measuring the aerosol in the 3rd pass of the boiler 
during a cleaning (“soot blowing”) routine enables to look 
at particles, which were deposited on the superheater 
fouling surfaces at a temperature of approx. 490 °C and 
blown off after an eight hours interval.  

Figure 9 gives a time resolved impression of the aerosol 
variation during soot blowing, which was recorded of the 
three soot blowers of the 3rd pass, each cleaning a 
superheater package by high pressure steam blowing from a 
rotating jet for a few minutes every 8 hours. The whole soot 
blowing procedure takes less than 15 minutes.  
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Fig. 9: 3D-Time (x-axis, total length equals 30 min) and 

particle size (y-axis, 0.8-20 µm) resolved mass 
concentration during a soot blowing routine. 
Measurement point is in the 3rd pass behind 3 soot 
blowers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 shows the mass concentration distribution 
during soot blowing compared to normal operation. The 
remobilized deposits of the superheaters are causing a small 
increase of the fine particle fraction, but mainly to the 
middle and coarse particle fractions. The hot and dry steam 
jet of the cleaning process obviously removes the deposited 
particles in a similar size distribution as they might have 
been when the fouling took place.  
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Fig. 10: Particle size distribution during normal operation  

(green) and soot blowing (black). 
 

The chemical analysis shows that the chlorine content 
of all three fractions is significantly smaller and sulphur is 
slightly increased (fig. 11). 

The aerosol sampled during soot blowing represents a 
mixture of current stack gas and remobilized deposits. The 



two-dimensional mixture of the aerosol size fractions and of 
more or less sulphated particles from the deposits can be 
relocated by calcium as an indicator, as calcium relations 
are not changed on the superheater. 
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Fig. 11: Chemical composition of the particles during soot 

blowing routine (“SB net”), compared with normal 
operation (“NO”). “Net” composition means the 
calculated difference between normal and soot 
blowing operation. 

 
 
Variation of operating parameters 

After characterisation of the normal operation and the 
deviations taking place in short term (size of fire), middle 
term (mixture of waste) and long term (seasonal changes, 
maintenance intervals), it was an important aspect to learn 
about the changes or different behaviour of the aerosol 
parameters when the operation parameters of the boiler 
were modified in a specific manner up to the limits of a save 
run.  

In a first experiment, the length of the fire was reduced 
by focussing the primary air to the first zones of the grate. 
By this the burning time for the waste was reduced 
paralleled by an increase in fire temperature. This state was 
kept for three days, measurements being performed at the 
second and third day.  

Whereas the particle fraction < 0.5 µm was nearly 
unaffected, the particle mass concentration of the particles 
above 0.5 µm nearly doubled, in the range of 1-20 µm, the 
mass concentration reached triple the value of normal 
operation (fig. 13). This can be explained by an increased 
halogenide (Cl, Br) release of a hotter fire. The halogenides 
condense as salt particles what is expected to create an 
increase of particles in the range one micrometer in the 
second pass. 
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Fig. 12: Mass concentration in the 2nd (orange lines) and 3rd  

(blue lines) pass at “short fire” operation, compared 
with normal operation (dotted lines). 
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Fig. 13: Relative change of mass concentration between 

normal operation and “short fire” in the 2nd pass 
(orange bar) and in the 3rd pass (green bar) 

 
The increased content of halogenides and alkalis 

compared to normal operation is also found in the chemical 
composition of the particles of the 3rd pass. Sodium and 
potassium in total are increased by more than five percent 
points, what means a doubling in the coarse particle 
fraction. 

Another experiment was to decrease the recirculation 
gas addition in the boiler. The recirculation gas is taken 
from the flue gas after the cyclone, which is the first 
cleaning component behind the boiler, and reinjected above 
the burning zone. The injection optimises the mixing of the 
burning gas, and by taking flue gas an oxygen overload is 
avoided. A potential disadvantage of this procedure could 
be that the recirculation gas is already enriched of fine and 
chlorine rich particles which are reinjected to the burning 
gas. 

Due to the construction of the boiler, the recirculation 
gas had to be kept at a minimum flow rate of 33 % of its 
standard value to prevent the ejectors from damage. So, 



during the experiment the recirculation gas fraction was 
reduced from 12 % to 5 % of the total gas volume.  

The measured mass concentration distribution and the 
chemical composition during reduced recirculation gas 
addition did not change significantly in any fraction. As the 
effect of the complete recirculation gas on the aerosol 
composition was expected to be small, this result was in 
agreement to the practical long-term experiences of the 
plant with this feature. 

 
 

Sulphur addition 
In a first series of experiments, sulphur pellets were 

added to the waste in differed amounts per hour (12 – 
30 kg/h). Fig. 14 summarizes all measurements with sulphur 
pellets and compares them with normal operation. None of 
the four experiments exhibit significant changes in the 
particle size distribution. 
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Fig. 14: Mass concentration at operation with sulphur pellet 

addition in the 2nd (orange lines) and 3rd (blue lines) 
pass compared with normal operation (dotted lines). 

 
The chemical composition responded to the additional 

sulphur by a chlorine reduction in the coarse fraction and a 
nearly complete exchange of the small rest of chlorine by 
sulphation in the inlet (fig. 15). 

Subsequent to the sulphur pellet addition sulphur 
dioxide was injected into the 1st pass above the fire. The 
results are widely comparable with the pellet experiments.  
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Fig. 15: Chemical composition of the four main particle 

fractions in the 3rd pass during sulphur pellet addition. 
The coarse fraction is displayed in its two fractions, 
the cyclone (= “> 20 µm”) and the inlet content. 

 
 
DISCUSSION 

The chemical analysis of the aerosol showed a higher 
corrosive potential of the fine fraction of the particles, as 
these particles contain high amounts of halogenides, mainly 
chlorides.  

The fine fraction of the particles (< 0.5 µm) contains a 
significantly higher content of alkali metals and chlorine, 
the smallest of the collected fractions (< 0.2 µm) are nearly 
completely composed of Na, K and Cl. Looking at the 
present mass concentrations only, corrosion could be 
completely calculated by the present chlorine content of the 
fine fraction. The role of these particles with respect to 
fouling is, however, rather small. Though their mass 
concentration fraction is not yet negligible, the possible 
main deposition mechanisms – thermo- and turbophoresis – 
are by far less effective. Another argument against the fine 
fraction is the approved phenomenon that corrosion is much 
higher on the front side of superheater tubes. The deposition 
mechanisms of fine particles and condensables, however, 
show no significant differences around the tube and the 
percentage of fine fraction particles on the rear of a tube, as 
the coarse fraction mainly deposits on the front, is by far 
higher than on the front. 

The fraction between the two modes, roughly at 10-
20 µm, is seen to have already the appropriate properties to 
impact at the superheater tubes. This fraction, however, was 
only found in very small concentrations. From the point of 
view of particle origin, there should be a gap between 
primary and secondary particles, which would only be 
closed by agglomeration or condensation processes. 
Accordingly, this fraction is observed in a growing mass 
concentration from pass to pass, with an increase of some 



one order of magnitude in total, but still staying the 
minimum mass concentration by approx. one order of 
magnitude. 

In summary, the efficiency of deposition mechanisms 
of particles on superheater tubes and the main regions of 
corrosion point to the coarse fraction, to particles of at least 
20 µm in aerodynamic diameter. Only this size and above is 
impacting on the tubes with a probability of more than 
50 %. Experimentally, this phenomenon could be proved by 
the composition of the deposits of investigated tube fouling, 
special fouling experiments and the inlet of the sampling 
probe, which all showed a high correlation with the coarse 
fraction of the particles from the cyclone. 

Thus, though their chemical composition seems rather 
passive compared to the fine particles, the coarse particles 
play the most important role in creating the fouling on the 
tubes and keeping the corrosion running.  

The question is arising how the chlorine supply to the 
corrosion front is maintained. In fouling investigations, the 
porosity of the deposits was approx. 50 %, however, no 
fluid regions or fine particle transport options could be 
observed. The porosity is rather suitable for molecular 
diffusion transport processes than for any even smallest 
particle size.  

In contrast to the sodium concentration, a good 
correlation was found between the sodium load of the 
fouling and the corrosion rates of the various ranges of a 
single tube. Even more, after preliminary data analysis, 
there seems to be also a correlation between the sodium 
load of different MSI and their specific corrosion rate. 

 
The study also shows that sulphation is not completed 

during the flight of the particles and is progressing on the 
deposits. However, the increase of sulphur in remobilized 
particles and therefore the degree of sulphation taking place 
on the deposits is less than expected.  

The addition of sulphur – by pellets or sulphur dioxide 
– did improve the situation of the important fraction of 
coarse particles, in agreement with other experiences 
(Grundmann, 2007; Hunsinger, 2004; Kautz, 2003 and 
Pettersson, 2005). The sulphur content did not only increase 
in the particles retained by the cyclone – representing the 
free particles – but also in the inlet – representing the 
deposited particles. Thus, addition of sulphur supports the 
sulphation during the flight phase, but also on the fouling. 
The desired effect of complete sulphation during the flight 
could not be achieved. However, the inlet content was 
almost free of chlorine. As the inlet is made of silica glass, 
the chlorine was not consumed by any corrosion reaction, 
so in fact a lack of chlorine was produced on the deposits 
what might impact the corrosion rate during a long-term 
addition of sulphur. 

The experiments with a shorter fire geometry 
confirmed that a higher fire temperature causes more salt 
being ejected resulting in an increase of particles in the 
aerodynamic size range of 0.5 µm and above. This 
combination of chlorine containing salts and particles sizes 
which are likely to impact at the superheater tubes seems to 
impair the corrosion situation of the tubes by a higher 
concentration of chlorine containing coarse particles 
(Deuerling, 2006). 

 
 

CONCLUSIONS 
1. The comprehensive physical and chemical investigation 

of the gas phase and the complete particle phase 
through the whole boiler of a MSI has generated an 
impression of the composition and dynamics as a base 
for understanding fouling processes.  

2. The fouling mainly consists of coarse particles 
deposited by impaction. Only a minor mass fraction 
derives from fine particles. 

3. It was measured that sulphation takes place during the 
flight of the particles and in the fouling. However, the 
measures applied to influence the speed of sulphation 
did not afford clear changes. 

4. The total chlorine being present at a certain place can 
be estimated by the lasting amounts of sodium and to a 
certain extent of potassium.  

5. The corrosion rate is merely linked to the absolute 
amount of chlorine transferred than to the present 
chlorine concentration. This explains why the higher 
concentration of chlorine at the rear of a superheater 
tube does not cause a higher corrosion rate than at the 
front side of the tube, where the concentration of 
sodium (chlorine indicator) is less, but the total amount 
by far higher. 

6. The presence of sodium seems also to be suitable for 
comparing the various MSI corrosion rates. This has to 
be further investigated and proven. If this correlation is 
confirmed, measures can be generated to influence the 
corrosion rates of superheaters. 

7. The design of the PTD sampling probe proved to be 
suitable for the broad range measurements. However, 
the deposits in the inlet turned out to have a major 
impact on the mass balances. The inlet design itself is 
therefore subject to consideration about possible future 
improvements. 

 
 
NOMENCLATURE 
MSI  Municipal solid waste incineration plant 
PTD Porous tube diluter 
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